Notes on Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces

نویسندگان

  • Zhen-Qing Chen
  • Panki Kim
  • Takashi Kumagai
چکیده

In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality. AMS 2000 Mathematics Subject Classification: Primary 60J75 , 60J35, Secondary 31C25 , 31C05. Running title: Notes on Heat Kernel Estimates and Parabolic Harnack Inequality

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces

In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality.

متن کامل

Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps

We investigate the relationships between the parabolic Harnack inequality, heat kernel estimates, some geometric conditions, and some analytic conditions for random walks with long range jumps. Unlike the case of diffusion processes, the parabolic Harnack inequality does not, in general, imply the corresponding heat kernel estimates.

متن کامل

RIMS-1753 BOUNDARY HARNACK INEQUALITY FOR MARKOV PROCESSES WITH JUMPS By

We prove a boundary Harnack inequality for jump-type Markov processes on metric measure state spaces, under comparability estimates of the jump kernel and Urysohn-type property of the domain of the generator of the process. The result holds for positive harmonic functions in arbitrary open sets. It applies, e.g., to many subordinate Brownian motions, Lévy processes with and without continuous p...

متن کامل

Boundary Harnack Inequality for Markov Processes with Jumps

We prove a boundary Harnack inequality for jump-type Markov processes on metric measure state spaces, under comparability estimates of the jump kernel and Urysohn-type property of the domain of the generator of the process. The result holds for positive harmonic functions in arbitrary open sets. It applies, e.g., to many subordinate Brownian motions, Lévy processes with and without continuous p...

متن کامل

On the equivalence of parabolic Harnack inequalities and heat kernel estimates

We prove the equivalence of parabolic Harnack inequalities and sub-Gaussian heat kernel estimates in a general metric measure space with a local regular Dirichlet form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008